AC-GORENSTEIN RINGS AND THEIR STABLE MODULE CATEGORIES
نویسندگان
چکیده
منابع مشابه
Stable Module Categories and Their Representation Type
Given a nite dimensional algebra over an algebraically closed eld one frequently disregards the projective objects in the category mod of nite dimensional-modules and focuses on the stable category mod. The objects of mod are those of mod but the Hom-groups are the ordinary Hom-groups modulo the subgroup of those morphisms which factor through a projective-module. In this paper we show that mod...
متن کاملGorenstein hereditary rings with respect to a semidualizing module
Let $C$ be a semidualizing module. We first investigate the properties of finitely generated $G_C$-projective modules. Then, relative to $C$, we introduce and study the rings over which every submodule of a projective (flat) module is $G_C$-projective (flat), which we call $C$-Gorenstein (semi)hereditary rings. It is proved that every $C$-Gorenstein hereditary ring is both cohe...
متن کاملGorenstein homological dimensions with respect to a semi-dualizing module over group rings
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
متن کاملGorenstein projective objects in Abelian categories
Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...
متن کاملSelf-equivalences of Stable Module Categories
Let P be an abelian p-group, E a cyclic p′-group acting freely on P and k an algebraically closed field of characteristic p > 0. In this work, we prove that every self-equivalence of the stable module category of k[P oE] comes from a self-equivalence of the derived category of k[P o E]. Work of Puig and Rickard allows us to deduce that if a block B with defect group P and inertial quotient E is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 2018
ISSN: 1446-7887,1446-8107
DOI: 10.1017/s1446788718000290